use trainer but has bugs
This commit is contained in:
@@ -177,32 +177,92 @@ def test(cfg: DictConfig):
|
||||
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
|
||||
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
||||
trainer = Trainer(
|
||||
gradient_clip_val=cfg.train.clip_grad,
|
||||
# accelerator="cpu",
|
||||
accelerator="gpu"
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else "cpu",
|
||||
devices=[cfg.general.gpu_number]
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else None,
|
||||
max_epochs=cfg.train.n_epochs,
|
||||
enable_checkpointing=False,
|
||||
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||
val_check_interval=cfg.train.val_check_interval,
|
||||
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||
enable_progress_bar=cfg.general.enable_progress_bar,
|
||||
callbacks=[],
|
||||
reload_dataloaders_every_n_epochs=0,
|
||||
logger=[],
|
||||
)
|
||||
|
||||
if not cfg.general.test_only:
|
||||
print("start testing fit method")
|
||||
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||
if cfg.general.save_model:
|
||||
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||
trainer.test(model, datamodule=datamodule)
|
||||
if cfg.general.type == "accelerator":
|
||||
graph_dit_model = model
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import set_seed, ProjectConfiguration
|
||||
|
||||
accelerator_config = ProjectConfiguration(
|
||||
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
|
||||
automatic_checkpoint_naming=True,
|
||||
total_limit=cfg.general.number_checkpoint_limit,
|
||||
)
|
||||
accelerator = Accelerator(
|
||||
mixed_precision='no',
|
||||
project_config=accelerator_config,
|
||||
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
|
||||
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
optimizer = graph_dit_model.configure_optimizers()
|
||||
|
||||
train_dataloader = datamodule.train_dataloader()
|
||||
train_dataloader = accelerator.prepare(train_dataloader)
|
||||
val_dataloader = datamodule.val_dataloader()
|
||||
val_dataloader = accelerator.prepare(val_dataloader)
|
||||
test_dataloader = datamodule.test_dataloader()
|
||||
test_dataloader = accelerator.prepare(test_dataloader)
|
||||
|
||||
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
|
||||
|
||||
# train_epoch
|
||||
from pytorch_lightning import seed_everything
|
||||
seed_everything(cfg.train.seed)
|
||||
for epoch in range(cfg.train.n_epochs):
|
||||
print(f"Epoch {epoch}")
|
||||
graph_dit_model.train()
|
||||
graph_dit_model.cur_epoch = epoch
|
||||
graph_dit_model.on_train_epoch_start()
|
||||
for batch in train_dataloader:
|
||||
optimizer.zero_grad()
|
||||
loss = graph_dit_model.training_step(batch, epoch)['loss']
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
graph_dit_model.on_train_epoch_end()
|
||||
for batch in val_dataloader:
|
||||
if epoch % cfg.train.check_val_every_n_epoch == 0:
|
||||
graph_dit_model.eval()
|
||||
graph_dit_model.on_validation_epoch_start()
|
||||
graph_dit_model.validation_step(batch, epoch)
|
||||
graph_dit_model.on_validation_epoch_end()
|
||||
|
||||
# test_epoch
|
||||
|
||||
graph_dit_model.test()
|
||||
graph_dit_model.on_test_epoch_start()
|
||||
for batch in test_dataloader:
|
||||
graph_dit_model.test_step(batch, epoch)
|
||||
graph_dit_model.on_test_epoch_end()
|
||||
|
||||
elif cfg.general.type == "Trainer":
|
||||
trainer = Trainer(
|
||||
gradient_clip_val=cfg.train.clip_grad,
|
||||
# accelerator="cpu",
|
||||
accelerator="gpu"
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else "cpu",
|
||||
devices=[cfg.general.gpu_number]
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else None,
|
||||
max_epochs=cfg.train.n_epochs,
|
||||
enable_checkpointing=False,
|
||||
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||
val_check_interval=cfg.train.val_check_interval,
|
||||
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||
enable_progress_bar=cfg.general.enable_progress_bar,
|
||||
callbacks=[],
|
||||
reload_dataloaders_every_n_epochs=0,
|
||||
logger=[],
|
||||
)
|
||||
|
||||
if not cfg.general.test_only:
|
||||
print("start testing fit method")
|
||||
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||
if cfg.general.save_model:
|
||||
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||
trainer.test(model, datamodule=datamodule)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test()
|
||||
|
Reference in New Issue
Block a user