update_name
This commit is contained in:
119
graph_dit/models/conditions.py
Normal file
119
graph_dit/models/conditions.py
Normal file
@@ -0,0 +1,119 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds scalar timesteps into vector representations.
|
||||
"""
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256):
|
||||
super().__init__()
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, hidden_size, bias=True),
|
||||
)
|
||||
self.frequency_embedding_size = frequency_embedding_size
|
||||
|
||||
@staticmethod
|
||||
def timestep_embedding(t, dim, max_period=10000):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param t: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an (N, D) Tensor of positional embeddings.
|
||||
"""
|
||||
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
).to(device=t.device)
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
return embedding
|
||||
|
||||
def forward(self, t):
|
||||
t = t.view(-1)
|
||||
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
||||
t_emb = self.mlp(t_freq)
|
||||
return t_emb
|
||||
|
||||
class CategoricalEmbedder(nn.Module):
|
||||
"""
|
||||
Embeds categorical conditions such as data sources into vector representations.
|
||||
Also handles label dropout for classifier-free guidance.
|
||||
"""
|
||||
def __init__(self, num_classes, hidden_size, dropout_prob):
|
||||
super().__init__()
|
||||
use_cfg_embedding = dropout_prob > 0
|
||||
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
||||
self.num_classes = num_classes
|
||||
self.dropout_prob = dropout_prob
|
||||
|
||||
def token_drop(self, labels, force_drop_ids=None):
|
||||
"""
|
||||
Drops labels to enable classifier-free guidance.
|
||||
"""
|
||||
if force_drop_ids is None:
|
||||
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
||||
else:
|
||||
drop_ids = force_drop_ids == 1
|
||||
labels = torch.where(drop_ids, self.num_classes, labels)
|
||||
return labels
|
||||
|
||||
def forward(self, labels, train, force_drop_ids=None, t=None):
|
||||
labels = labels.long().view(-1)
|
||||
use_dropout = self.dropout_prob > 0
|
||||
if (train and use_dropout) or (force_drop_ids is not None):
|
||||
labels = self.token_drop(labels, force_drop_ids)
|
||||
embeddings = self.embedding_table(labels)
|
||||
if True and train:
|
||||
noise = torch.randn_like(embeddings)
|
||||
embeddings = embeddings + noise
|
||||
return embeddings
|
||||
|
||||
class ClusterContinuousEmbedder(nn.Module):
|
||||
def __init__(self, input_size, hidden_size, dropout_prob):
|
||||
super().__init__()
|
||||
use_cfg_embedding = dropout_prob > 0
|
||||
|
||||
if use_cfg_embedding:
|
||||
self.embedding_drop = nn.Embedding(1, hidden_size)
|
||||
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(input_size, hidden_size, bias=True),
|
||||
nn.Softmax(dim=1),
|
||||
nn.Linear(hidden_size, hidden_size, bias=False)
|
||||
)
|
||||
self.hidden_size = hidden_size
|
||||
self.dropout_prob = dropout_prob
|
||||
|
||||
def forward(self, labels, train, force_drop_ids=None, timestep=None):
|
||||
use_dropout = self.dropout_prob > 0
|
||||
if force_drop_ids is not None:
|
||||
drop_ids = force_drop_ids == 1
|
||||
else:
|
||||
drop_ids = None
|
||||
|
||||
if (train and use_dropout):
|
||||
drop_ids_rand = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
||||
if force_drop_ids is not None:
|
||||
drop_ids = torch.logical_or(drop_ids, drop_ids_rand)
|
||||
else:
|
||||
drop_ids = drop_ids_rand
|
||||
|
||||
if drop_ids is not None:
|
||||
embeddings = torch.zeros((labels.shape[0], self.hidden_size), device=labels.device)
|
||||
embeddings[~drop_ids] = self.mlp(labels[~drop_ids])
|
||||
embeddings[drop_ids] += self.embedding_drop.weight[0]
|
||||
else:
|
||||
embeddings = self.mlp(labels)
|
||||
|
||||
if train:
|
||||
noise = torch.randn_like(embeddings)
|
||||
embeddings = embeddings + noise
|
||||
return embeddings
|
Reference in New Issue
Block a user