add the results

This commit is contained in:
mhz
2024-08-20 09:11:10 +02:00
parent 4959c6c176
commit 01c5c277be
14 changed files with 189121 additions and 258 deletions

View File

@@ -70,7 +70,7 @@ class DataModule(AbstractDataModule):
# base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
# except NameError:
# base_path = pathlib.Path(os.getcwd()).parent[2]
base_path = '/home/stud/hanzhang/nasbenchDiT'
base_path = '/nfs/data3/hanzhang/nasbenchDiT'
root_path = os.path.join(base_path, self.datadir)
self.root_path = root_path
@@ -408,6 +408,7 @@ def new_graphs_to_json(graphs, filename):
adj = graph[0]
n_node = len(ops)
print(n_node)
n_edge = len(ops)
n_node_list.append(n_node)
n_edge_list.append(n_edge)
@@ -489,7 +490,7 @@ def new_graphs_to_json(graphs, filename):
'transition_E': transition_E.tolist(),
}
with open(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f:
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-meta.json', 'w') as f:
json.dump(meta_dict, f)
return meta_dict
@@ -655,7 +656,7 @@ def graphs_to_json(graphs, filename):
class Dataset(InMemoryDataset):
def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None):
self.target_prop = target_prop
source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
self.source = source
# self.api = API(source) # Initialize NAS-Bench-201 API
# print('API loaded')
@@ -676,8 +677,8 @@ class Dataset(InMemoryDataset):
return [f'{self.source}.pt']
def process(self):
source = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
self.api = API(source)
source = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
# self.api = API(source)
data_list = []
# len_data = len(self.api)
@@ -710,14 +711,24 @@ class Dataset(InMemoryDataset):
return True
def generate_flex_adj_mat(ori_nodes, ori_edges, max_nodes=12, min_nodes=8,random_ratio=0.5):
# print(ori_nodes)
# print(ori_edges)
ori_edges = np.array(ori_edges)
# ori_nodes = np.array(ori_nodes)
nasbench_201_node_num = 8
# random.seed(random_seed)
nodes_num = random.randint(min_nodes, max_nodes)
# print(f'arch_str: {arch_str}, \nmax_nodes: {max_nodes}, min_nodes: {min_nodes}, nodes_num: {nodes_num},random_seed: {random_seed},random_ratio: {random_ratio}')
add_num = nodes_num - nasbench_201_node_num
# ori_nodes, ori_edges = parse_architecture_string(arch_str)
add_nodes = [op for op in random.choices(num_to_op[1:-1], k=add_num)]
add_nodes = []
print(f'add_num: {add_num}')
for i in range(add_num):
add_nodes.append(random.choice(num_to_op[1:-1]))
# print(add_nodes)
print(f'ori_nodes[:-1]: {ori_nodes[:-1]}, add_nodes: {add_nodes}')
print(f'len(ori_nodes[:-1]): {len(ori_nodes[:-1])}, len(add_nodes): {len(add_nodes)}')
nodes = ori_nodes[:-1] + add_nodes + ['output']
edges = np.zeros((nodes_num , nodes_num))
edges[:6, :6] = ori_edges[:6, :6]
@@ -727,12 +738,18 @@ class Dataset(InMemoryDataset):
rand = random.random()
if rand < random_ratio:
edges[i, j] = 1
return nodes, edges
if nodes_num < max_nodes:
edges = np.pad(edges, ((0, max_nodes - nodes_num), (0, max_nodes - nodes_num)), 'constant',constant_values=0)
while len(nodes) < max_nodes:
nodes.append('none')
print(f'edges size: {edges.shape}, nodes size: {len(nodes)}')
return edges,nodes
def get_nasbench_201_val(idx):
pass
def graph_to_graph_data(graph, idx):
# def graph_to_graph_data(graph, idx):
def graph_to_graph_data(graph):
ops = graph[1]
adj = graph[0]
nodes = []
@@ -753,58 +770,95 @@ class Dataset(InMemoryDataset):
edge_index = torch.tensor(edges_list, dtype=torch.long).t()
edge_type = torch.tensor(edge_type, dtype=torch.long)
edge_attr = edge_type
# y = torch.tensor([0, 0], dtype=torch.float).view(1, -1)
y = get_nasbench_201_val(idx)
y = torch.tensor([0, 0], dtype=torch.float).view(1, -1)
# y = get_nasbench_201_val(idx)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i)
return data
graph_list = []
with tqdm(total = len_data) as pbar:
active_nodes = set()
for i in range(len_data):
arch_info = self.api.query_meta_info_by_index(i)
results = self.api.query_by_index(i, 'cifar100')
file_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
with open(file_path, 'r') as f:
graph_list = json.load(f)
i = 0
flex_graph_list = []
flex_graph_path = '/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json'
for graph in graph_list:
# arch_info = self.api.query_meta_info_by_index(i)
# results = self.api.query_by_index(i, 'cifar100')
arch_info = graph['arch_str']
# results =
# nodes, edges = parse_architecture_string(arch_info.arch_str)
ops, adj_matrix = parse_architecture_string(arch_info.arch_str)
# ops, adj_matrix = parse_architecture_string(arch_info.arch_str, padding=4)
ops, adj_matrix, ori_nodes, ori_adj = parse_architecture_string(arch_info, padding=4)
# adj_matrix, ops = create_adj_matrix_and_ops(nodes, edges)
for op in ops:
if op not in active_nodes:
active_nodes.add(op)
graph_list.append({
"adj_matrix": adj_matrix,
"ops": ops,
"idx": i,
"train": [{
"iepoch": result.get_train()['iepoch'],
"loss": result.get_train()['loss'],
"accuracy": result.get_train()['accuracy'],
"cur_time": result.get_train()['cur_time'],
"all_time": result.get_train()['all_time'],
"seed": seed,
}for seed, result in results.items()],
"valid": [{
"iepoch": result.get_eval('x-valid')['iepoch'],
"loss": result.get_eval('x-valid')['loss'],
"accuracy": result.get_eval('x-valid')['accuracy'],
"cur_time": result.get_eval('x-valid')['cur_time'],
"all_time": result.get_eval('x-valid')['all_time'],
"seed": seed,
}for seed, result in results.items()],
"test": [{
"iepoch": result.get_eval('x-test')['iepoch'],
"loss": result.get_eval('x-test')['loss'],
"accuracy": result.get_eval('x-test')['accuracy'],
"cur_time": result.get_eval('x-test')['cur_time'],
"all_time": result.get_eval('x-test')['all_time'],
"seed": seed,
}for seed, result in results.items()]
})
data = graph_to_graph_data((adj_matrix, ops))
# with open(flex_graph_path, 'a') as f:
# flex_graph = {
# 'adj_matrix': adj_matrix,
# 'ops': ops,
# }
# json.dump(flex_graph, f)
flex_graph_list.append({
'adj_matrix':adj_matrix,
'ops': ops,
})
if i < 3:
print(f"i={i}, data={data}")
with open(f'{i}.json', 'w') as f:
f.write(str(data.x))
f.write(str(data.edge_index))
f.write(str(data.edge_attr))
data_list.append(data)
# new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ops, ori_edges=adj_matrix, max_nodes=12, min_nodes=8, random_ratio=0.5)
# data_list.append(graph_to_graph_data((new_adj, new_ops)))
new_adj, new_ops = generate_flex_adj_mat(ori_nodes=ori_nodes, ori_edges=ori_adj, max_nodes=12, min_nodes=9, random_ratio=0.5)
flex_graph_list.append({
'adj_matrix':new_adj.tolist(),
'ops': new_ops,
})
# with open(flex_graph_path, 'w') as f:
# flex_graph = {
# 'adj_matrix': new_adj.tolist(),
# 'ops': new_ops,
# }
# json.dump(flex_graph, f)
data_list.append(graph_to_graph_data((new_adj, new_ops)))
# graph_list.append({
# "adj_matrix": adj_matrix,
# "ops": ops,
# "arch_str": arch_info.arch_str,
# "idx": i,
# "train": [{
# "iepoch": result.get_train()['iepoch'],
# "loss": result.get_train()['loss'],
# "accuracy": result.get_train()['accuracy'],
# "cur_time": result.get_train()['cur_time'],
# "all_time": result.get_train()['all_time'],
# "seed": seed,
# }for seed, result in results.items()],
# "valid": [{
# "iepoch": result.get_eval('x-valid')['iepoch'],
# "loss": result.get_eval('x-valid')['loss'],
# "accuracy": result.get_eval('x-valid')['accuracy'],
# "cur_time": result.get_eval('x-valid')['cur_time'],
# "all_time": result.get_eval('x-valid')['all_time'],
# "seed": seed,
# }for seed, result in results.items()],
# "test": [{
# "iepoch": result.get_eval('x-test')['iepoch'],
# "loss": result.get_eval('x-test')['loss'],
# "accuracy": result.get_eval('x-test')['accuracy'],
# "cur_time": result.get_eval('x-test')['cur_time'],
# "all_time": result.get_eval('x-test')['all_time'],
# "seed": seed,
# }for seed, result in results.items()]
# })
pbar.update(1)
for graph in graph_list:
@@ -818,6 +872,8 @@ class Dataset(InMemoryDataset):
graph['ops'] = ops
with open(f'nasbench-201-graph.json', 'w') as f:
json.dump(graph_list, f)
with open(flex_graph_path, 'w') as f:
json.dump(flex_graph_list, f)
torch.save(self.collate(data_list), self.processed_paths[0])
@@ -981,18 +1037,29 @@ class Dataset_origin(InMemoryDataset):
torch.save(self.collate(data_list), self.processed_paths[0])
def parse_architecture_string(arch_str):
def parse_architecture_string(arch_str, padding=0):
# print(arch_str)
steps = arch_str.split('+')
nodes = ['input'] # Start with input node
adj_mat = np.array([[0, 1, 1, 0, 1, 0, 0, 0],
ori_adj_mat = [[0, 1, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 1 ,0 ,0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0]])
# [0, 0, 0, 0, 0, 0, 0, 0]])
[0, 0, 0, 0, 0, 0, 0, 0]]
# adj_mat = np.array([[0, 1, 1, 0, 1, 0, 0, 0],
adj_mat = [[0, 1, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 1 ,0 ,0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1],
# [0, 0, 0, 0, 0, 0, 0, 0]])
[0, 0, 0, 0, 0, 0, 0, 0]]
steps = arch_str.split('+')
steps_coding = ['0', '0', '1', '0', '1', '2']
cont = 0
@@ -1004,7 +1071,21 @@ def parse_architecture_string(arch_str):
cont += 1
nodes.append(n)
nodes.append('output') # Add output node
return nodes, adj_mat
ori_nodes = nodes.copy()
if padding > 0:
for i in range(padding):
nodes.append('none')
for adj_row in adj_mat:
for i in range(padding):
adj_row.append(0)
# adj_mat = np.append(adj_mat, np.zeros((padding, len(nodes))))
for i in range(padding):
adj_mat.append([0] * len(nodes))
# print(nodes)
# print(adj_mat)
# print(len(adj_mat))
# print(f'len(ori_nodes): {len(ori_nodes)}, len(nodes): {len(nodes)}')
return nodes, adj_mat, ori_nodes, ori_adj_mat
def create_adj_matrix_and_ops(nodes, edges):
num_nodes = len(nodes)
@@ -1046,6 +1127,7 @@ class DataInfos(AbstractDatasetInfos):
adj_ops_pairs = []
for item in data:
print(item)
adj_matrix = np.array(item['adj_matrix'])
ops = item['ops']
ops = [op_type[op] for op in ops]
@@ -1066,12 +1148,12 @@ class DataInfos(AbstractDatasetInfos):
# ops_type[op] = len(ops_type)
# len_ops.add(len(ops))
# graphs.append((adj_matrix, ops))
graphs = read_adj_ops_from_json(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json')
graphs = read_adj_ops_from_json(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/flex-nasbench201-graph.json')
# check first five graphs
for i in range(5):
print(f'graph {i} : {graphs[i]}')
print(f'ops_type: {ops_type}')
# print(f'ops_type: {ops_type}')
meta_dict = new_graphs_to_json(graphs, 'nasbench-201')
self.base_path = base_path
@@ -1280,11 +1362,11 @@ def compute_meta(root, source_name, train_index, test_index):
'transition_E': tansition_E.tolist(),
}
with open(f'/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f:
with open(f'/nfs/data3/hanzhang/nasbenchDiT/graph_dit/nasbench201.meta.json', "w") as f:
json.dump(meta_dict, f)
return meta_dict
if __name__ == "__main__":
dataset = Dataset(source='nasbench', root='/home/stud/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None)
dataset = Dataset(source='nasbench', root='/nfs/data3/hanzhang/nasbenchDiT/graph-dit', target_prop='Class', transform=None)